
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

1

Deadline Guaranteed Service for Multi-Tenant
Cloud Storage

Guoxin Liu, Student Member, IEEE , Haiying Shen*, Senior Member, IEEE and Haoyu Wang

Abstract—It is imperative for cloud storage systems to be able to provide deadline guaranteed services according to service level
agreements (SLAs) for online services. In spite of many previous works on deadline aware solutions, most of them focus on scheduling
work flows or resource reservation in datacenter networks but neglect the server overload problem in cloud storage systems that
prevents providing the deadline guaranteed services. In this paper, we introduce a new form of SLAs, which enables each tenant to
specify a percentage of its requests it wishes to serve within a specified deadline. We first identify the multiple objectives (i.e., traffic
and latency minimization, resource utilization maximization) in developing schemes to satisfy the SLAs. To satisfy the SLAs while
achieving the multi-objectives, we propose a Parallel Deadline Guaranteed (PDG) scheme, which schedules data reallocation (through
load re-assignment and data replication) using a tree-based bottom-up parallel process. The observation from our model also motivates
our deadline strictness clustered data allocation algorithm that maps tenants with the similar SLA strictness into the same server to
enhance SLA guarantees. We further enhance PDG in supplying SLA guaranteed services through two algorithms: i) a prioritized data
reallocation algorithm that deals with request arrival rate variation, and ii) an adaptive request retransmission algorithm that deals with
SLA requirement variation. Our trace-driven experiments on a simulator and Amazon EC2 show the effectiveness of our schemes for
guaranteeing the SLAs while achieving the multi-objectives.

Keywords: Cloud storage, Service level agreement (SLA), Deadline, Resource utilization.

F

1 INTRODUCTION

Cloud storage (e.g., Amazon Dynamodb [1], Amazon
S3 [2] and Gigaspaces [3]) is emerging as a popular
business service with the pay-as-you-go business mod-
el [4]. Instead of maintaining private clusters with vast
capital expenditures, more and more enterprises shift
their data workloads to the cloud. In order to supply
a cost-effective service, the cloud infrastructure is trans-
parently shared by multi-tenants in order to fully utilize
cloud resources, which however leads to unpredictable
performance of tenants’ service. Indeed, tenants often
experience significant performance variations, e.g., in
service latency of data requests [5–7].

Such unpredictable performance hinders tenants from
migrating their workload to cloud storage systems since
the data access latency is important to their commercial
business. Experiments at Amazon portal [8] demonstrat-
ed that increasing page presentation time by as little
as 100ms significantly reduces user satisfaction, and de-
grades sales by one percent. For data retrieval in the web
presentation process, the typical latency budget inside a
storage system for a web request is only 50-100 ms [9].

Therefore, the unpredictable performance without the
deadline guaranteed services decreases the quality of
service to clients, reduces the profit of the tenants,
prevents tenants from using the cloud storage systems,
and hence reduces the profit of the cloud provider-
s. Therefore, ensuring service deadline is critical for
application performance guarantee of tenants. For this
purpose, we argue that cloud storage systems should

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• Haiying Shen, Guoxin Liu and Haoyu Wang are with the Department of
Electrical and Computer Engineering, Clemson University, Clemson, SC,
29634. E-mail: {guoxinl, shenh, haoyuw}@clemson.edu

have service level agreements (SLAs) [10] baked into
their services as other online services. In such an SLA,
the cloud storage guarantees that the data requests of a
tenant will be responded by a specific latency target (i.e.,
deadline) with no less than a pre-promised probability.
The deadline and probability in an SLA are specified by
the tenant in the SLA with the cloud provider based
on the tenant’s provided services to the clients. For
example, the SLA can be specified as 99.9% of web page
presentation need to be completed within a deadline of
200-300ms [11, 10]. A key cause for high data access
latency is excess loads on cloud storage servers. Many
requests from different tenants targeting a workload-
intensive server may be blocked due to the server’s
limited service capability, which causes unexpected long
latency. Therefore, to guarantee such SLAs, a challenge is
how to allocate data partitions among servers (i.e., data
allocation) under the multiplexing of tenants’ workloads
to avoid overloaded servers. A server is called an over-
loaded server if the request arrival rate on it exceeds
its service capability so that it cannot supply an SLA
guaranteed data access service; otherwise, it is called an
underloaded server. However, previous deadline aware
solutions neglect this overload problem in cloud storage
systems that prevents providing the deadline guaranteed
services; most of them focus on scheduling work flows
or resource reservation in datacenter networks [10, 12–
15]. Therefore, in this paper, we propose our Parallel
Deadline Guaranteed scheme (PDG) to ensure the SLAs
for multiple tenants in a cloud storage system.

Avoiding service overload to ensure the SLAs is a non-
trivial problem. A data partition request is served by one
of the servers that hold the data replicas. Each replica
server has a serving ratio (i.e., the percentage of requests
directed to the server) assigned by the cloud storage
load balancer. We avoid service overload by data realloca-
tion including the reassignment of serving ratios among
replica servers and creating data replicas. This process

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

2

is complex and challenging due to the heterogeneity
of server capacities, tenant deadline requirements and
variations of request rates of tenants.

We first formulate this data reallocation problem by
identifying the multiple objectives in developing a data
reallocation scheme, including traffic minimization, re-
source utilization maximization and scheme execution
latency minimization. To solve this problem, we then
build a mathematical model to measure the SLA per-
formance under a specific data-server allocation given
predicted data request workloads from tenants. The
model helps to derive the upper bound of request arrival
rate on each server to guarantee the SLAs. To guaran-
tee the SLAs while achieving the multi-objectives, PDG
schedules data reallocation (through load re-assignment
and data replication), through a tree-based bottom-up
parallel process in the system load balancer. The parallel
process expedites the scheduling procedure; load migra-
tion between local servers reduces traffic load, and server
deactivation increases resource utilization.

Our mathematical model also indicates that placing
the data of two tenants with greatly different SLAs to
the same server would reduce resource utilization, which
motivates our deadline strictness clustered data alloca-
tion algorithm that maps tenants with the same SLA
into the same server during data reallocation scheduling.
We further enhance PDG in supplying SLA guaranteed
services through two algorithms: i) a prioritized data
reallocation algorithm, and ii) an adaptive request re-
transmission algorithm. The prioritized data reallocation
algorithm handles the situation that the request rate
may vary greatly over time and even experience sharp
increase, which would lead to SLA violations. In this al-
gorithm, highly overloaded servers autonomously probe
nearby servers and the load balancer instantly handles
highly overloaded servers without delay. The adaptive
request retransmission algorithm handles the situation
that tenants’ SLA requirements may vary over time. In
this algorithm, when a queried server does not reply in
time, the frond-end server waits for a time period before
retransmitting the request to another server. The waiting
time is determined so that the SLA requirement can be
met and the communication overhead is minimized.

We summarize our contribution below:
•Data reallocation problem formulation for SLA guaran-
tee with multi-objectives in a multi-tenant cloud storage
system.
•A mathematical model to measure the SLA perfor-
mance, which gives an upper bound of the request
arrival rate of each server.
• The PDG scheme to ensure SLA guarantee while
achieving the multi-objectives.
(1) Tree-based parallel processing;
(2) Data reallocation scheduling;
(3) Server deactivation.
• PDG enhancement algorithms to avoid SLA violations
under request arrival rate and SLA requirement varia-
tion with low overhead.
(1) Deadline strictness clustered data allocation;
(2) Prioritized data reallocation;
(3) Adaptive request retransmission.
• Trace-driven experiments that show the effectiveness
and efficiency of our schemes in achieving deadline

guarantees and the multi-objectives on both a simulator
and Amazon EC2 [16].

The rest of the paper is organized as follows. Section
2 depicts the system model and the problem. Section 3
presents the prediction of the SLAs’ performance in
future. Based on this prediction, Section 4 and Section 5
present our parallel deadline guaranteed scheme and
its enhancement in detail. Section 6 presents the perfor-
mance evaluation of our methods compared with other
methods. Section 7 presents the related work. Section 8
concludes the paper with remarks on our future work.

2 PROBLEM STATEMENT
2.1 System Model and A New SLA
We consider a heterogeneous cloud storage system con-
sisting of N tenants and M data servers of the same
kind, which may have different serving capabilities and
storage capacities but supply the same storage service.
As shown in Figure 1, tenant t1 operates an online
social network (OSN) (e.g., WeChat), t2 operates a portal
(e.g., Netflix) and tN operates a file hosting service (e.g.,
Dropbox). A data partition is a unit for data storage and
replication. One server may store the data partitions
from different tenants and a tenant’s data partitions
may be stored in different servers, e.g., s2 stores the
data replicas of t1 and t2. Each data partition may have
multiple replicas across different servers. We assume that
each data partition has at least r (r > 1) replicas.

t1: OSN

Cl
ou

d
st

or
ag

e

t1’s Status

tN: File Hosting

t1’s Posts & t2’s Ads

t1’s Message

tN’s File

Fr
on

t-e
nd

t2: Portal

. . .

Te
na

nt
s

Da
ta

 se
rv

er
s

s1

s2

s3

sM

Fig. 1: Multi-tenant cloud storage service.

A data request from a tenant targets a set of data
partitions in several servers, such as a News Feed request
in Facebook targeting all recent posts. The request arrives
at the front-end server of the cloud first, and then is
redirected according to the load balancing strategy in the
load balancer to servers, each of which hosts a replica
of the requested data partition. The service latency of a
request is the longest respond time in all target servers.
As in [17], we assume that the arrival of data requests
from a tenant follows a Poisson distribution, where the
average request rate of tenant tk is λtk . Each data server
has a single queue for requests from all tenants.

As shown in Figure 1, t1’s deadline is dt1=200ms and
its request is served by s1 and s2. Though s1’s response
latency is 100ms, s2 produces 500ms response latency
due to the colocation of data request intensive data
partitions of t1 and t2 on s2. To provide the deadline
guaranteed service to tenants, we introduce a new form
of SLAs for cloud storage service. That is, for any tenant
tk, no more than εtk percent of all requests have service
latency larger than a given deadline, denoted as dtk .
We use Ptk to denote the probability of tk’s request
having service latency no longer than dtk , then the SLA

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

3

is denoted by (εtk , dtk); Ptk ≥ 1 − εtk . The probability
εtk and deadline dtk are specified by the tenants in their
SLAs with the cloud provider. For simplicity, we only
consider a common SLA for all requests from a tenant
tk, which can be easily extended for multiple SLAs for
different types of requests from tk. If there are multiple
types of requests from tk that have different SLAs, tk can
be treated as several different sub-tenants. We assume
that the data request responses are independent, which
means the servers work independently for data requests.

2.2 Problem Formulation
In this section, we formulate the problem of data reallo-
cation for the SLA guarantee service in a cloud storage
system. Recall that the serving ratio of a data partition
Di’s replica is the percentage of requests targeting Di
that are served by this replica. We define data allocation
as the allocation status for data partition placement in
servers and serving ratios of data partition replicas. We
use XDi

sn , a binary variable, to denote the existence of Di’s
replica on server sn. We use HDi

sn to denote the serving
ratio of the replica of Di in sn. Then, the data allocation
(denoted by f) can be presented as a set of mappings:

f ={〈s1, (XD1
s1 · H

D1
s1 , X

D2
s1 · H

D2
s1 , ..., X

Dk
s1 · H

Dk
s1)〉, ...,

〈sn, (XD1
sn · H

D1
sn , X

D2
sn · H

D2
sn , ..., X

Dk
sn · H

Dk
sn)〉},

We use Ptk to denote the probability of tk’s request
having service latency no longer than dtk . In order to
ensure the SLAs, we should have ∀tk,Ptk/(1− εtk) ≥ 1.
Thus, for data partition replicas on overloaded servers,
we either reduce their serving ratios or create new
replicas in underloaded servers. Such data reallocation
leads to a new data allocation among servers.

To avoid disrupting cloud storage service, we identify
the objectives during data reallocation. To maximize
resource utilization for energy-efficiency, we aim to min-
imize the number of servers. We name a server in use
as an active server, and denote the whole set of active
servers (Mu) as

Mu = {sn :
∑
Di∈D

XDi
n · HDi

sn > 0 ∧ sn ∈M},

where D is the set of all data partitions.
Another important issue is the traffic load (replication

cost through network), caused by replicating data par-
titions to underloaded servers. We use the product of
data size (SDi

) and the number of transmission hops (i.e.,
switches in the routing path) between servers sm and sn
(Ismsn) to measure the traffic load (ξsnDi

) for replicating Di
from sm to sn [18, 19]; ξsnDi

= SDi
· Ismsn . Suppose f is the

original data allocation, and f ′ is a new data allocation
to ensure the SLAs. sfn = {Di : XDi

sn = 1} denotes the set
of data partitions contained in sn in f . Thus, the total
traffic load for a specific f ′ is

Φf ′ =
∑
sn∈M

∑
Di∈sf

′
n ∧Di 6∈sfn

ξsnDi
.

We aim to find a new data allocation f ′, so that the traffic
load that converts f to f ′ is minimized. The conversion
from f to f ′ also introduces data access workload on
servers. In order not to interfere in tenants’ data requests,
each server maintains a priority queue, where the data
transmission for conversion has a lower priority than

customer’s requests. Also, since the conversion time is
very small compared to the time for data allocation f ′,
the effect of conversion on SLA can be ignored.

Finally, we formulate the problem of data reallocation
for deadline guarantee as a nonlinear programming by
simultaneousness achieving these two goals as:

min (|Mu|+ βΦf ′) (1)

subject to ∀tk,Ptk/(1− εtk) ≥ 1 (2)∑
sn∈Mu

XDi
sn · H

Di
sn = 1 ∀Di ∈ D (3)

∑
Di∈D

SDi ·X
Di
sn ≤ Csn ∀sn ∈M (4)

∑
sn∈M

XDi
sn ≥ r ∀Di ∈ D (5)

XDi
sn ∈ {0, 1} ∀sn ∈M, ∀Di ∈ D (6)

0 ≤ HDi
sn ≤ 1 ∀sn ∈M,∀Di ∈ D (7)

where Csn denotes the storage capacity of sn.
In Formula (1), β is a relative weight between the

two objectives. If β is larger, the data reallocation tends
to reduce the traffic load more than the number of
active servers, and vice versa. Constraint (2) ensures
the SLAs. Constraint (3) ensures that all data requests
targeting any data partition can be successfully served.
Although the storage capacity of a datacenter can be
increased infinitely, the storage capacity of a server in
the datacenter is still limited. Constraint (4) ensures that
the storage usage cannot exceed storage capacity in any
server. Constraint (5) guarantees that there are at least
r replicas for each data partition in the system in order
to maintain data availability. Constraint (6) guarantees
that each data partition is either stored at most once or
not stored in a data server. Constraint (7) guarantees that
each replica’s serving ratio is between 0 and 1.

Beside the two objectives, the execution time of creat-
ing f ′ is important to constantly maintain the SLA guar-
antee over time. Thus, another objective is to minimize
the execution time of the data reallocation scheme.

Lemma 1. The problem of data reallocation for deadline
guarantee is NP-Hard.

Proof: The service rate of a server is the average
number of requests served by it per unit time. Suppose
that all servers are homogeneous with equal service rate
and storage capacity. Assume that the servers’ service
rate is large enough to ensure the SLAs, and we do
not consider the traffic load cost, which means β = 0.
Then, the deadline guarantee problem is to create a data
allocation with the minimum number of active servers
under storage capacity constraints of all servers, which
is a bin packing problem [20]. Since the bin packing
problem is NP-hard, our problem is also NP-hard.

We then propose our heuristic PDG scheme to solve
this problem. To achieve the condition in Equation (2),
in Section 3, we build a mathematical model to derive
the upper bound of request arrival rate at each server to
satisfy Equation (2), which is named as deadline guaran-
teed arrival rate, denoted by λgsn . Then, in Section 4, we
present PDG to constrain the request arrival rate in each
server below λgsn through data reallocation.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

4

3 PREDICTION OF SLA PERFORMANCE

According to [15], the response time of workflows fol-
lows a long tail distribution with low latency in most
cases. Thus, we assume that the service latency follows
an exponential distribution. In addition, we assume that
the arrival rate of requests follows the Poisson process
as in [17], and each server works independently with a
single queue. Therefore, each server can be modeled as
an M/M/1 queuing system [21]. In an M/M/1 queuing
system, there is a single server, where arrivals follow
a Poisson process and the job service time follows an
exponential distribution.

To calculate the parameters, we profile the average
service latency T sn of a request of a server, and then
calculate its service rate µsn = 1

T sn . In each short period
T , the system monitor tracks the request arrival rate
of each data partition by λ′Di

= NDi/T , where NDi is
the number of requests on this partition. Then, we can
forecast λDi

for the next period, as λDi
= g(λ′Di

), where
g(λ) is a demand forecasting method as introduced
in [22]. Thus, the request arrival rate of sn:

λsn =
∑
Di∈D

λDi
·XDi

sn · H
Di
sn .

Based on the forecasted λsn and λgsn given by our
mathematical model, the available service capacity of sn
is calculated by µasn = λgsn − λsn .
sn is an overloaded server if µasn < 0; an underloaded server if
µasn > 0; and an idle server if λsn = 0. PDG then conducts
data reallocation to eliminate the overloaded servers.
Below, we build the mathematical model to calculate λgsn .

Suppose T sn
ti
k

is tk’s request i’s service latency on server
sn. According to [23], the corresponding cumulative
distribution function of T sn

ti
k

for tk’s request i in an
M/M/1 queuing system is:

F (t)sn = 1− e−(µsn−λsn)·t. (8)
For a request i, targeting a set of data partitions in

several servers, the request’s service latency depends
on the longest service latency among all target servers.
Then, the corresponding probability that the service
latency meets the deadline requirement is

Pti
k

= p(max{T sn
ti
k

}sn∈<(tik) ≤ dtk), (9)

where <(tik) is the set of target data servers for the
request i, and each request partition is served by a server.
In Equation (9), max{T sn

ti
k

}sn∈<(tik) ≤ dtk also means that
∀sn ∈ <(tik), T sn

ti
k

≤ dtk . Since T sntk is an independent
variable for different servers, we can have

Pti
k

=
∏

sn∈<(tik)

F (dtk)sn . (10)

Event A means that dtk is satisfied. Event B mean-
s that the data request has a target server set from
φtk={<1,<2, ...<j , ...}. We use event Bj to mean that the
target server set is <j .
Ptk = p(A∩B) = p(B|A)·p(A) = p((∪<j∈φtk

Bj)|A)·p(A).

Assuming each Bj is independent to each other, we have

Ptk =
∑
<j∈φtk

p(Bj |A) · p(A) =
∑
<j∈φtk

p(A|Bj) · p(Bj).

According to Equation (10), the deadline satisfying prob-
ability can be rewritten as

Ptk =
∑
<j∈φtk

(
∏

sn∈<j

F (dtk)sn) · p(Bj). (11)

However, |φtk | grows exponentially, so tracking all p(Bj)
to calculate Ptk is impractical. Then, for tenant tk, we
define btk = min{F (dtk)sn}. (12)
Thus, we can rewrite Equation (11) by combining differ-
ent Bj with same cardinality as

Ptk ≥
∑
<j∈φtk

(btk)|<j | · p(Bj) =
∑
j∈[1,n]

bjtk · Ftk(j), (13)

where Ftk(j) is the probability density function that tk’s
request targets j servers in the next period, and n is the
maximum cardinality of <j , which can be derived from
the trace of the previous period. Combing Formulas (13)
and (2), we get f(btk) =

∑
j∈[1,n] btk ·Ftk(j) = 1− εtk . We

use xtk to denote the solution for btk ∈ (0, 1), and call it
the supportive probability of tenant tk

Lemma 2. If ∀tk∀sn, sn ∈ <tk ⇒ F (dtk)sn ≥ xtk , then the
SLAs are guaranteed.

Proof: Based on this condition and Equation (12), we
can get btk ≥ xtk . Due to monotone increasing of f(btk)
when btk ∈ (0, 1), we can get that f(btk) ≥ f(xtk) =
1 − εtk . According to Equation (13), for any tk, we can
get Ptk ≥ f(xtk) = 1−εtk . Thus, each tk’s SLA is ensured.

According to Lemma 2 and Equation (8), for each
tenant tk, we can get a upper bound of λsn to satisfy
the SLAs: λsn ≤ µsn − |ln(1− xtk)/dtk |.
Definition 1. We use Ktk to denote |ln(1 − xtk)/dtk |, and
call Ktk the deadline strictness of tenant tk, which reflects
the hardness of tk’s deadline requirement.

Then, in order to ensure the SLAs, the deadline guar-
anteed arrival rate should satisfy:

λgsn = µsn −max{Ktk : sn ∈ <(tk)}. (14)
If ∀sn, λsn ≤ λgsn is satisfied in a specific data allocation,
the SLAs are ensured. This is the goal in data reallocation
in PDG to satisfy the SLAs.

4 PARALLEL DEADLINE GUARANTEED
SCHEME
4.1 Overview
Figure 2 shows an overview of the parallel deadline
guarantee scheme (PDG). It consists of three basic com-
ponents and three components for enhancement. When
a server’s workload does not satisfy λsn ≤ λgsn , it is an
overloaded server and its excess workload needs to be
offloaded to other underloaded servers. The tree-based
parallel processing algorithm builds servers to a logical
tree. It enables the information of servers to be collected
in the bottom-up manner and arranges the workload
transfer from overloaded servers to underloaded servers.
The data reallocation scheduling algorithm is executed
in each parent node in the tree to arrange the workload
transfer through load re-assignment and data replication.
Finally, the server deactivation algorithm aims to mini-
mize the number of active servers.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

5

Fig. 2: Overview of PDG.

The three enhancement algorithms improve the per-
formance of PDG. The deadline strictness clustered data
allocation algorithm groups the tenants with similar
deadline strictness and places their data partitions to
the same server in order to increase tenants’ deadline
strictness, hence reduces the probability of SLA viola-
tions. The prioritized data reallocation algorithm enables
overloaded servers to probe nearby servers to offload
their excess loads without waiting for the next time
period for the data reallocation scheduling based on the
tree. In the adaptive request retransmission algorithm,
the front-end server retransmits a request targeting an
overloaded server to other servers storing the requested
data partition’s replicas in order to guarantee SLAs.

4.2 Tree-based Parallel Processing
The load balancer in the system conducts the SLA
performance prediction in the next period and triggers
data reallocation process if ∃sn, λsn > λgsn . The load
balancer is a cluster of physical machines that cooperate
to conduct the load balancing task. In order to reduce
the execution time of data reallocation scheduling, we
propose a concept of tree-based parallel processing. We
assume a main tree topology for the servers [24] in
the cloud. The load balancer abstracts a tree structure
from the topology of data servers and switches (routers),
with all data servers as leaves and switches (routers) as
parents (Figure 3 (a)). To abstract the tree structure from
any topology of data servers and switches (routers), such
as a fat tree [24], PDG selects one of the core routers as
the source, and finds the shortest paths from it to all
data servers to build the tree structure. It then creates
a number of virtual nodes (VNs). The VNs form a tree
that mirrors the parent nodes in the topology tree and
still uses the servers as leaves as shown in Figure 3(b).
Each VN is mapped to a physical machine in the load
balancer; that is, the VN’s job is executed by its mapped
physical machine.

The parallel data reallocation scheduling is conducted
based on the tree structure in a bottom-up manner.
The bottom-up process reduces the traffic load gener-
ated during the conversion to a new data allocation,
by reducing the number of transmission hops for data
replication. The VNs in the bottom level are responsible
for collecting the following information for their children
(i.e., servers): 〈sn, (XD1

s1 ·H
D1
s1 , X

D2
s1 ·H

D2
s1 , ..., X

Dk
s1 ·H

Dk
s1)〉,

the request arrival rate and the number of replicas of
each data partition, and each tk’s supportive probability.
Then, they calculate µasn for their servers and classify
them to overloaded, underloaded and idle servers. After
that, it conducts the data reallocation scheduling, which
moves data service load from overloaded servers to
underloaded or idle servers. We will explain the details

VN3

.

VN1 VN2

U
nr

es
ol

ve
d

se
rv

er
s D

ata allocation sj sM s1 sj+1 sj sM s1 sj+1

(a) Cloud tree topology (b) Virtual node based tree structure

Fig. 3: Tree structure for parallel data reallocation scheduling.

of this process later. After the scheduling, if some servers
are still overloaded or are still underloaded, the parent
forwards the information of these servers to its parent.
This process repeats until the root node finishes the
scheduling process. Therefore, the scheduling for servers
in the same sub-tree is conducted in parallel, which
expedites the scheduling process of the data reallocation.

4.3 Data Reallocation Scheduling
Each VN groups overloaded servers, underloaded
servers and idle servers into an overloaded list (Lo), an
available list (La) and an idle list (Li), respectively. In
the data reallocation scheduling algorithm, the lists are
sorted in order to move the load from most overload-
ed servers to the most underloaded servers to quickly
improve their service latency. In the data reallocation,
each VN first conducts the serving ratio reassignment
algorithm and then conducts the new replica creation
algorithm to release the load of overloaded servers.

In the serving ratio reassignment algorithm, the VN
fetches each sn from Lo and releases its extra load |µasn |
to servers in La by reassigning the serving ratios on
its data partitions to the same partitions’ replicas in
underloaded servers. In sn, the data partitions Di that
have higher request rate (λDi

sn) should be selected in
order to more quickly release the extra load. Also, larger
data partitions should be selected first because it can
proactively reduce the traffic load in the subsequent data
replication phase. To consider both factors, we use the
harmonic mean metric 2 ·λDi

sn ·SDi
/(λDi

sn +SDi
) to sort Di

in decreasing order. It tends to quickly release the load
of overloaded servers, and reduce the traffic load in the
new replica creation algorithm by avoiding replicating
partitions with a larger arrival rate and data size. Then,
the partial of the serving ratio min{|µasn |, µ

a
sm , λ

Di
sn } on

the replica in sn is moved to the replica in sm. This
process repeats until sn releases all |µasn | or cannot find
an underloaded server to release load.

In the new replica creation algorithm, each unsolved
overloaded server in Lo replicates its data partitions
to underloaded servers in La. The data partitions with
higher λDi should be selected first to replicate since
they can more quickly release the extra load. Also, the
replication of Di that has larger size will generate higher
traffic load. To consider these two factors, we propose
a metric of λDi

sn /SDi
. The Di in an overloaded server

sn are sorted in decreasing order of λDi
sn /SDi

. It aims
to quickly release the load of overloaded servers while
reducing both the number and the data size of replicas.
Also, with the proximity consideration, sm replicates
Di from the closest server with a replica of Di in the
current subtree to reduce the traffic load by reducing
the number of transmission hops in replication. If sn
cannot release all of its extra load, it replicates its data
partitions to the servers in the idle list.

6

4.4 Server Deactivation

This algorithm aims to deactivate as many servers to
sleep as possible in order to maximize resource utiliza-
tion while ensuring the SLAs. In each period, when the
data reallocation successfully achieves the SLA guar-
antee, then the server deactivation can be triggered if∑
sn∈Mu

(λgsn − λsn) ≥ min{λsn}sn∈Mu
, i.e., the sum of

the available service capacities of all active servers is no
less than the minimum value among all servers’ request
arrival rates. In this case, the workload on the server
introduced by the minimum request arrival rate may be
supported by other servers.

This algorithm is conducted by the root. It first sorts
active servers sn in ascending order of λgsn . Then, starting
from the first active server sn, it sets its λgsn to 0, and
runs the data reallocation scheduling offline. If the data
reallocation is successful, i.e., sn’s all workload can be
offloaded to other servers while ensuring the SLAs, the
root conducts the data reallocation, and deactivates sn
to sleep. Otherwise, the process terminates. Then, the
system has the new data allocation satisfying the SLAs
with the minimum number of active servers.

5 PDG ENHANCEMENT

5.1 Deadline Strictness Clustered Data Allocation

Different tenants have different deadline strictness (de-
noted by Ktk), where Ktk = F−1sn (dtk , εtk). Intuitively, a
tenant with a short deadline (dtk) and small exception
probability (εtk) has a higher Ktk , which leads to a
small deadline guaranteed arrival rate (λgsn) given the
service rate of sn. We use Mtk to denote the set of
all servers serving the data requests from tk. Based
on Formula (14), if we place the data partitions of
tenants with greatly different Ktk in the same server,
many tenants’ deadline strictness are much larger than
min{F−1sn (dtk , εtk)}∀tk, sn∈Mtk

, which leads to low re-
source utilization of all servers with small guaranteed
arrival rates. By isolating the services of groups of ten-
ants having different deadline strictness, we can reduce
the average max{Ktk : sn ∈ <(tk)} of all underloaded
servers, which leads to a higher potential resource uti-
lization.

To avoid this problem, each VN classifies all tenants
into different groups (Gi) according to their Ktk :

tk ∈ Gi iff K̄tk ∈ [τ · i, τ · (i+ 1)), (15)
where τ is the Ktk range of each group, and K̄tk is
the average of Ktk in previous data reallocation oper-
ations. After classification, the VN avoids placing the
data partitions of tenants from different groups in the
same server. To this end, it conducts data reallocation
in Section 4 separately for different groups. That is, a
VN runs one data reallocation process for individual
groups only with the servers for the group tenants and
idle servers. Then, this algorithm increases the λgsn of a
server by reducing the variance of Ktk of tenants having
data partitions on it, which increases resource utilization
of the system. In our future work, we will investigate
the resource multiplexing among different groups while
increasing resource utilization.

5.2 Deadline Guarantee under Request Rate Varia-
tions

Within a period, the request arrival rates may vary
greatly over time and sometimes even experience sharp
increases, which would violate the SLAs. When a heavily
overloaded server waits for the periodical data reallo-
cation from the load balancer, it may experience the
overload for a relatively long time, which exacerbates
the SLA violation. In order to constantly ensure the
SLAs dynamically within each period, we can use the
highest arrival rate in a certain previous time period as
the predicted rate for the next period. However, it will
lead to low resource utilization by using more servers.
Thus, we propose prioritized data reallocation algorithm
that quickly releases the load on the heavily overloaded
servers in order to guarantee the SLAs.

Edge	
Switch	

Over-	
loaded	
Server	i	

Under-	
Loaded	
Server	i	

	

Over-	
loaded	
Server	k	

.			

Load	balancer	

		.	.	.			

RESP:	<{D2,D5},	asj>	

Alloc	

REQ	

Priority	Queue:		

				Alloc.	
				PDG	

Fig. 4: Prioritized data reallocation for deadline guarantee.
The overloaded server sn autonomously probes near-

by servers to quickly release its load. sn selects data
partitions with the largest request arrival rates, sum of
which is larger than |µasn |. It then broadcasts the infor-
mation of these selected data partitions to nearby data
servers. When an underloaded server, say sm, receives
this message, it responds with its available service capac-
ity µasm and the information of duplicated data partitions
in it. When sn receives the responses from its nearby
servers, it conducts the serving ratio reassignment al-
gorithm and notifies the data reallocation information
to the load balancer and participating servers. If sn is
still overloaded, sn sends a load releasing request to
the load balancer. Inside the load balancer, we set a
threshold Tr ≤ 0 for the available service capacity µasn
of overloaded servers. When µasn < Tr, i.e., the overload
degree is high, the request is put into a priority queue
maintained by the root VN in Figure 4. Once the root
VN notices the existence of such a server, it handles the
server with the smallest µasn using the data reallocation
scheduling algorithm instantly.

5.3 Adaptive Request Retransmission

Within a period, tenant tk may make its SLA requirement
more rigid by requiring a smaller dtk or εtk , so that
its deadline strictness becomes more rigid. According
to Formula (14), a more rigid deadline strictness of a
tenant leads to a smaller deadline guaranteed arrival
rate λgsn , which is the upper bound of request arrival
rate at sn without SLA violations. Thus, servers serving
this tenant’s requests may become overloaded. We can
depend on the data reallocation scheduling algorithm
in Section 4.3 to achieve load balance again. However,
it needs to replicate data partitions from overloaded
servers to underloaded servers, and introduces a certain
traffic load. In order to save the traffic load, we rely on a
request retransmission algorithm running on the front-
end server without depending on data reallocation.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

7

In a request retransmission algorithm, the front-end
server retransmits a request to other servers storing
requested data partition’s replicas in order to guarantee
SLAs. This way, although some of the servers cannot
supply an SLA guarantee service independently to tk,
the earliest response time among them may satisfy the
SLA requirement. Once there is a response, the front-
end server cancels all other redundant requests [25].
Then, the cancelled requests will not be served, and the
request arrival rate of the requested data partition will
not be changed.

Intuitively, we can simultaneously transmit a request
of data partition Di to all servers that store a replica of
Di in order to achieve a low response latency with a high
probability. However, it generates high communication
overhead due to many transmitted messages and request
cancelation. To reduce the communication overhead,
we can retransmit requests to servers sequentially. In
Percentile [25], a front-end server transmits requests to
servers storing the requested data partition one by one
and waits a fixed percentile of the CDF of the response
latencies of all the servers in the system after each re-
quest transmission until it receives a response. However,
since it determines the waiting time without deadline
awareness, if the percentile is high, it may not guarantee
the SLA (i.e., a probability higher than 1− εtk to receive
a response within the deadline); otherwise, it may gen-
erate high communication overhead. Also, due to the
fixed waiting time, it cannot constantly supply an SLA
guaranteed service when the SLA requirement varies.
A challenge here is to adaptively determine the waiting
time before retransmission so that the SLA requirement
still can be satisfied and the communication overhead is
minimized.

To tackle this challenge, we propose an adaptive request
retransmission algorithm. In this algorithm, the waiting
time, named as adaptive waiting time (denoted by τtk) is
specified to be the longest delay with deadline aware-
ness, so that it can supply an SLA guaranteed service to
tenant tk and meanwhile minimize the communication
overhead. That is, the setting of τtk can ensure that the
response is received by deadline dtk with a probability
equal to 1 − εtk while minimizing the communication
overhead. We use LDi

to denote the list of servers (that
store a replica of Di) ordered in ascending order of
their request arrival rates with index starting from 0.
The front-end sequentially sends the requests for Di
to the servers in LDi

one by one so that more loaded
servers will be requested later. We assume that each
server responds the request independently. Given the
CDF of the response latency of each server sn serving
the request from tenant tk and the tk’s SLA requirement
〈dtk , εtk〉, the probability that all servers do not respond
the requests within the deadline should be equal to εtk :∏

sn∈LDi

Fsn(λsn , dtk − τtk · I(sn,LDi
)) = εtk (16)

where I(sn,LDi
) ∈ [0, |LDi

| − 1] is a function that
returns the index of server sn’s position in list LDi

.
Fsn(λsn , dtk − τtk · I(sn,LDi)) represents the probability
of receiving the response from server sn at position
I(sn,LDi

) in list LDi
. Since the front-end server waits

for time τtk · I(sn,LDi) before the retransmission to sn,
sn should respond the request before dtk−τtk ·I(sn,LDi

)
in order to meet the deadline. By solving this equation,
we can derive the adaptive waiting time τtk that satisfies
the rigid SLA requirement of tenant tk and also saves the
communication overhead maximally.

Based on the adaptive determination of τtk , we then
present the adaptive request retransmission algorithm.
Starting from the first server sn in LDi , the front-end
server waits for an adaptive waiting time τtk , after
transmitting a request from tenant tk to sn. If there is
a response during the waiting time, all requests not re-
sponded yet are canceled and the process is terminated;
otherwise, the front-end server sends the request to the
next server in LDi

.

6 PERFORMANCE EVALUATION
In simulation. We conducted a trace-driven simulation
on both a simulator and Amazon EC2 [16] to evalu-
ate the performance of PDG in comparison with other
methods. In the simulation, there were 3000 data servers,
each of which has a storage capacity randomly chosen
from {6TB, 12TB, 24TB} [26, 27]. Each ten servers were
simulated by one node in the Palmetto Cluster [28],
which has 771 8-core nodes. The topology of the storage
system is a typical fat tree with three levels [24]. In each
rack, there were 40 servers, and each aggregation switch
linked to five edges. In the experiments, each server
was modeled as an M/M/1 queuing system [29, 21].
In an M/M/1 queuing system, there is a single server,
where the arrivals of requests follow a Poisson process
and the job service time follows an exponential dis-
tribution. According to [23], the corresponding inverse
function of the CDF of the response latency distribution
is F−1sn (d, ε) = µsn−|ln(1−ε)/d|. The service rate µ of each
server was randomly chosen from [80,100]. According to
Equation (14), we can derive λgsn .

The default number of tenants was 500. For each
tenant, the number of its data partitions was randomly
chosen from [100,900]. Each partition has the size ran-
domly chosen from [6GB,36GB], and the request arrival
rate in the Poisson process was generated as 10 times of a
randomly selected file’s visit rate from the CTH trace [30]
as in Section 5.3. For each tenant’s SLA, dtk was random-
ly chosen from [100ms, 200ms] [31], and εtk was set to 5%
referring to 95th-percentile pricing [32]. We set the min-
imum number of replicas of each partition as 2. Initially,
each replica of a partition has the same serving ratio.

On Amazon EC2. We repeated the experiments in
simulation in a real-world environment consisting of
30 nodes in an availability zone of EC2’s US west
region [16]. We chose all nodes as front-end servers on
EC2, and the request arrival rate of each data partition
requested has the same visit rate as in [30]. Each node in
EC2 simulates 10 data servers in order to enlarge system
scale, and each data server has a service rate randomly
chosen from [8, 10]. Due to the local storage limitation
of VMs in EC2, the partition size and server storage
capacity were set to 1/3000 of the settings in Section 6.
The default number of tenants was 10. We measured
the distance of any pair of data servers by the average
ping latency, based on which we mapped all simulated

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

8

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

100 200 300 400 500 600

A
v
e
ra
g
e
 l
a
te
n
c
y
 (
m
s
)

Number of tenants

Random Pisces
Deadline CDG
PDG

(a) In simulation

1

4

16

64

256

1024

4096

16384

30 60 90 120 150 180

A
v
e
ra
g
e
 l
a
te
n
c
y
 (
m
s
)

Average request rate per tenant

Random Pisces
Deadline CDG
PDG

(b) On Amazon EC2

Fig. 5: Average latency.

1

10

100

1000

10000

100000

100 200 300 400 500 600

A
v
e

ra
g

e
 e

x
c
e

s
s

la
te

n
c
y

(m

s
)

Number of tenants

Random Pisces
Deadline CDG
PDG

(a) In simulation

1

4

16

64

256

1024

4096

16384

30 60 90 120 150 180

A
v
e
ra
g
e
 e
x
c
e
s
s

la
te
n
c
y

(m

s
)

Average request rate per tenant

Random Pisces
Deadline CDG
PDG

(b) On Amazon EC2

Fig. 6: Average excess latency.

0%

20%

40%

60%

80%

100%

120%

100 200 300 400 500 600

Q
o

S
 o

f
S

L
A

Number of tenants

Random Pisces
Deadline CDG
PDG

(a) In simulation

0

0.2

0.4

0.6

0.8

1

1.2

30 60 90 120 150 180

Q
o

S
 o

f
S

L
A

Average request rate per tenant

Random Pisces

Deadline CDG

PDG

(b) On Amazon EC2

Fig. 7: QoS of SLA.

0%

50%

100%

150%

100 200 300 400 500 600

S
L
A

 s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Number of tenants

Random Pisces Deadline
CDG PDG

(a) In simulation

0%

50%

100%

150%

30 60 90 120 150 180

S
L
A

 s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Average request rate per tenant

Random Pisces Deadline
CDG PDG

(b) On Amazon EC2

Fig. 8: SLA satisfactory level.

storage servers into a typical three layer fat-tree with
20 severs in a rack. According to the setting, the average
request rate per tenant is around 30 requests per second.
In all experiments, we enlarged the request arrival rates
of each partition by one to six times. Thus, the average
request rate per tenant was increased from 30 to 180
requests per second with 30 increase at each step. The
default average request rate per tenant was set to 120.

We compared PDG with CDG, which runs PDG in a
centralized manner without the tree structure. We also
compared PDG with a deadline unaware strategy, which
places replicas greedily and sequentially to servers with
constraints of each server’s storage capacity and service
rate. It is adopted by [33] to allocate data partition-
s to different servers, so we denoted it by Pisces. In
order to compare the performance of our strategies in
Section 4.3, we provided an enhanced Pisces strategy
(named as Deadline) for comparison, which additionally
ensures that the request arrival rate on a server cannot
exceed its deadline guaranteed arrival rate λgsn . We also
added another comparison method (denoted by Ran-
dom), which randomly places data replicas to servers that
have enough storage capacity. We set the SLA prediction
period to one hour. We conducted each experiment 10
times with an hour running and report the average
experimental results.

6.1 Performance of Deadline Guarantee

In this experiment, each tenant stores all of its da-
ta partition replicas randomly into the system. Fig-
ures 5(a) and 5(b) show the average latency of requests
of all tenants versus the number of tenants in sim-
ulation and on testbed, respectively. They show that
Pisces>PDG≈CDG≈Deadline>Random when there are no
larger than 500 tenants. With 600 tenants, the average
latency of Random is larger than all three methods with
deadline awareness. With fewer tenants, Random uses all
servers, so the load of a server is the smallest. When the
system has a heavy data request load from 600 tenants,
Random produces unbalanced utilization among servers,

and some overloaded servers have much larger latency
than the deadlines. Since PDG, CDG and Deadline supply
deadline guaranteed services, they produce similar av-
erage latencies. Pisces does not consider deadline, and
distributes more load on a server, which leads to a
much longer service latency than all other methods. The
figures also show that the average latency of Random
increases proportionally to the number of tenants, while
other methods have nearly stable average latency. The
methods except Random constrain the request arrival rate
on a server below λgsn , and try to fully utilize the active
servers. Thus, their expected load on an active server
is nearly stable as the number of tenants increases. In
Random, more replicas of partitions are allocated to a
server, which leads to an increasing average latency as
the number of tenants increases. Figures 5(a) and 5(b)
indicate that PDG and CDG can supply deadline guar-
anteed service with stable and low average latency to
tenants even under a heavy system load.

We also evaluate the excess latency of a data request,
which is defined as the extra service latency time be-
yond the deadline for a request. Figures 6(a) and 6(b)
show the average excess latency of all requests. They
show a similar curve and relationship for all methods
as Figure 5(a) due to the same reasons. A noteworthy
difference is that unlike the average latency, the average
excess latency of Random is larger than Deadline, PDG
and CDG when the number of tenants exceeds 300 or
60 due to its neglect of SLAs in simulation and on
testbed, respectively. Also, Random generates an average
excessive latency larger than 100ms with 400 or more
tenants, which will degrade the sale of customers [8] and
prevent them to shift workload to cloud storage systems.
Figures 6(a) and 6(b) also indicate that PDG and CDG can
provide a lower average excess latency, which means a
lower average excess latency when the SLA is violated.

We define QoS of SLA as min{∀tk,Ptk/(1 − εtk)}. Fig-
ures 7(a) and 7(b) show the QoS of each method. They
show that all Deadline, CDG and PDG can supply a
deadline-aware service with a QoS slightly larger than
1, which means SLAs of all tenants are satisfied. Due

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

9

0%

20%

40%

60%

80%

100%

120%

140%

100 200 300 400 500 600

R
e

s
o

u
rc

e
 u

ti
li

z
a

ti
o

n

Number of tenants

Random Pisces Deadline
CDG PDG

(a) In simulation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 60 90 120 150 180

R
e

s
o

u
rc

e
 u

ti
li
z
a

ti
o

n

Average request rate per tenant

Random Pisces Deadline

CDG PDG

(b) On Amazon EC2

Fig. 9: Resource utilization.

0

500

1000

1500

2000

2500

3000

30 60 90 120 150 180

S
a

v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average request rate per tenant

Pisces Deadline CDG PDG

(a) In simulation

0

50

100

150

200

250

300

30 60 90 120 150 180

S
a

v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average request rate per tenant

Pisces Deadline CDG PDG

(b) On Amazon EC2

Fig. 10: Saved energy.

1

10

100

1000

10000

100000

5% 10% 15% 20% 25%

C
o

m
p

u
ti

n
g

ti

m
e

 (
m

s
)

Average arrival rate variance per partition

Deadline CDG PDG

(a) In simulation

1

10

100

1000

10000

100000

5% 10% 15% 20% 25%

C
o

m
p

u
ti

n
g

ti

m
e

 (
m

s
)

Average arrival rate variance per partition

Deadline CDG PDG

(b) On Amazon EC2

Fig. 11: Computing time.

0

5000

10000

15000

20000

5% 10% 15% 20% 25%

T
ra

ff
ic

 l
o

a
d

 (
G

B
*

h
o

p
)

Average arrival rate variance per partition

Deadline CDG PDG

(a) In simulation

0

500

1000

1500

2000

2500

3000

5% 10% 15% 20% 25%

T
ra

ff
ic

 l
o

a
d

 (
G

B
*

h
o

p
)

Average arrival rate variance per partition

Deadline CDG PDG

(b) On Amazon EC2

Fig. 12: Traffic load.

to the worst performance on overloaded servers for the
same reason as in Figure 5(a), Random cannot supply a
deadline guaranteed service when the request load is
heavy. Its QoS is reduced to 80% when there are 600
tenants. Since the QoS is very important for tenants
operating web applications, this is a big obstacle for
customers to shift their workload to cloud storage sys-
tems. Also, Random always uses all servers even when
the number of tenants is small. Since the servers can
supply SLA guaranteed services to 600 tenants as shown
in PDG and CDG, Random wastes at least 83%, 67% and
50% resources to supply a deadline guaranteed service
when there are 100, 200 and 300 tenants, respectively in
simulation. Also, due to the same reason as Figure 5(a),
Pisces has a much worse QoS than other methods. Al-
though Deadline can supply a deadline-aware service, its
QoS is larger than PDG’s and CDG’s. That is because it
uses more servers to supply the deadline-aware service,
which means Deadline wastes system resources to supply
over-satisfied services. Figures 7(a) and 7(b) indicate that
PDG and CDG achieve QoS of SLA larger than and closer
to 100%, respectively, which are higher than those of all
other methods.

Figures 8(a) and 8(b) show the median, 5th and
95th percentiles of all tenants’ SLA satisfaction lev-
el, defined as Ptk/(1 − εtk), in simulation and on
testbed, respectively. Due to the same reason as Fig-
ure 7(a), the median satisfaction level follows Ran-
dom>Deadline≈PDG≈CDG≈1>Pisces, when the number
of tenants is no larger than 500 (90), and Random supplies
a worse performance than PDG, CDG and Deadline in
simulation (on testbed). Random exhibits larger variances
between the 5th and 95th percentiles than the three
deadline-aware methods when the request load is heavy.
They indicate that Random supplies unfair deadline guar-
anteed service among all tenants with different SLAs.
Also, Pisces produces the largest variance, because the
requests from tenants with looser deadline requirements
can be more easily satisfied. Also, Deadline can supply
SLA guaranteed services for all tenants, but it uses

more system resources than PDG and CDG due to the
same reasons as in Figure 7(a). Figures 8(a) and 8(b)
indicate that PDG and CDG can constantly supply SLAs
guaranteed services using less system resources.

6.2 Performance for Multiple Objectives
In this section, we measure the performance of all sys-
tems in achieving the multi-objectives including resource
utilization maximization, traffic load and scheme execu-
tion latency minimization. Figures 9(a) and 9(b) show
the median, the 5th and 95th percentiles of the server
resource utilization, calculated by ρsn = λsn/µsn . The
median server utilization follows Random<Deadline<
PDG<CDG<Pisces. Random generates the smallest uti-
lization by using all servers, and Pisces generates the
highest utilization by fully utilizing the service rates of
servers with the greedy strategy, but at the cost of a very
low QoS as shown in Figure 7(a). PDG and CDG produce
higher resource utilization than Deadline. PDG and CDG
fully utilize available service capacities of active server-
s by serving ratio reassignment and data replication.
When Deadline tries to allocate a partition replica with a
request arrival rate, it choose a server that must be able
to support this request arrival rate without considering
the distribution of the load among several servers, thus
leading to lower server utilization. Also, by balancing
the load between most overloaded and underloaded
servers, PDG and CDG have smaller variances between
the 5th and 95th percentile of resource utilization than
Deadline. CDG has higher resource utilization than PDG
(1.3% more on average). This is because in CDG, the
centralized load balancer can deactivate a server with the
highest service rate among all sleeping servers, which
leads to fewer active servers to support the deadline-
awareness service. Thus, CDG has higher utilization than
PDG. The experimental results indicate that PDG can
achieve comparable resource utilization as CDG, and
both of them have higher and more balanced resource
utilization than Deadline, which also offers a deadline-
aware service.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

10

As in [34], we measured the energy savings in server×
hour by counting the sleeping time of all servers. Since
Random uses all servers without energy consideration,
we only measured the performance of all other methods.
Figures 10(a) and 10(b) show that saved energy follows
Deadline<PDG<CDG<Pisces due to the same reason as
in Figure 9(a). PDG can save up to 95 server∗hour more
than Deadline on average. The figures indicate that both
PDG and CDG can save more energy than Deadline.

Even though CDG saves more energy than PDG,
CDG uses much more computing time and introduces
more traffic load than PDG. In order to measure these
overheads, we set the request arrival rate of each par-
tition, λp, to a value randomly chosen from [λp · (1 −
2x), λp · (1 + 2x)], where x is the average arrival rate
variance, and is increased from 5% to 25% by 5%
at each step. Random and Pisces cannot supply dead-
line guaranteed services, and they do not schedule
data reallocation after the request arrival rate vary-
ing. Therefore, we compare the performance of PDG
with CDG and Deadline. Figures 11(a) and 11(b) show
the median, the 5th and 95th percentiles of algorith-
m computing time. We see that the computing time
and its variance follows Deadline<PDG<CDG. This is
because the data reallocation algorithm in both PDG
and CDG has higher time complexity than a greedy
algorithm in Deadline. In PDG, the tree-based par-
allel processing shortens the computing time. Thus,
PDG only takes around 5.8% computing time of CDG.

0

5

10

15

5% 10% 15% 20% 25%

A
v
e

ra
g

e
 c

o
n

v
e

rs
io

n

ti
m

e
 (

s
)

Average arrival rate variance per partition

Deadline CDG PDG

Fig. 13: Conversion time.

We measured the traffic
load in GB · hop as
introduced in Section 2.2.
Figures 12(a) and 12(b)
show the median, the 5th
and 95th percentiles of
traffic load, which follows
PDG<CDG<Deadline.
Since PDG and CDG try
to reduce traffic load in
data reallocation, they produce lower traffic load than
Deadline. PDG has lower traffic load than CDG because
PDG has lower expected transmission path length than
CDG by resolving the overloaded servers locally first.
The figures indicate that PDG introduces the lowest
traffic load to the system, which produces the least
interruption to the cloud data storage service. We also
measured the conversion time of data reallocation
schedule, as the time that all servers finish conversion
to the new data allocation. Figure 13 shows the average
conversion time of all systems, which shows a similar
curve and relationship for all methods as Figure 12(a)
due to the same reason. It indicates that PDG achieves
the lowest conversion time, no longer than 5 seconds,
causing the fewest effects on the SLA. All Figures 12
and 13 show that PDG achieves a better performance in
minimizing the traffic load.

6.3 Performance of Deadline Guarantee Enhance-
ment
In this section, we present the performance of each of
the PDG enhancement algorithms individually.

6.3.1 Performance of Deadline Strictness Clustered Da-
ta Allocation
In order to make the deadline strictness of tenants hav-
ing data on the same server vary greatly, different from
the scenario in Section 6.1, in this experiment, tenants
add data replicas to servers in turn and each tenant
adds one data replica to a server at each time. Since this
method does not affect the performance of Random and
Pisces, which do not consider tenant deadline require-
ments, we compared the performance of Deadline, and
PDG with and without the deadline strictness clustered
data allocation algorithm, denoted by PDG (w/ c) and
PDG (w/o c), respectively. PDG (w/ c) groups all tenants
into 5 different clusters.

Figures 14(a) and 14(b) shows the median, the 5th
and 95th percentiles of the server resource utilization
versus the number of tenants. Due to the same reasons
as in Figure 9(a), Deadline generates lower resource u-
tilization than PDG. Also, PDG (w/ c) generates high-
er utilization than PDG (w/o c). This is because the
data partitions with strict SLAs increase the deadline
strictness requirement of data partitions on servers, and
hence reduces λgsn of the servers, and then decreases
the resource utilization. Thus, PDG (w/o c) supplies
overqualified service of higher Ptk to the tenants with
lower deadline strictness, while PDG (w/ c) isolates the
deadline service performance of tenants with differen-
t deadline strictness. Without supplying overqualified
service, PDG (w/ c) produces higher utilization than
PDG (w/o c). Figure 14(a) indicates that the deadline
strictness clustered data allocation algorithm can help
PDG achieve higher resource utilization when the tenant
deadline strictness varies greatly. By rationally utilizing
the system resources, PDG (w/ c) can still supply a
deadline guaranteed service when there are 600 tenants,
while others cannot. The experimental results indicate
that PDG can achieve higher resource utilization with the
deadline strictness clustered data allocation algorithm.
Figures 15(a) and 15(b) show the extra energy saved by
PDG (w/o c) and PDG (w/ c) versus the number of
tenants. PDG (w/ c) saves more energy than PDG (w/o
c). These results indicate that the deadline strictness clas-
sification strategy is effective in helping PDG maximize
the resource utilization and minimize the number of
active servers.

6.3.2 Performance of Prioritized Data Reallocation
We measured the effectiveness of the prioritized data re-
allocation algorithm in satisfying the SLAs of all tenants.
In this experiment, each data partition’s request arrival
rate varies once at a randomly selected time during the
experiment time. The variation of request arrival rates is
the same as in Figure 11. We use PDG R and PDG NR
to denote PDG with and without this algorithm. We set
Tr = 0 in PDG R. We use PDG H to denote PDG that
uses the highest arrival rate in a previous time period as
the predicted rate for the next period.

Figures 16(a) and 16(b) show the median,
the 5th and 95th percentiles of QoS of SLA of
each method. They show that the QoS follows
PDG NR<1≈PDG R<PDG H. PDG NR cannot supply
a deadline guaranteed service with varying data request

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

11

0%

20%

40%

60%

80%

100%

100 200 300 400 500 600

R
e

s
o

u
r
c
e

 u
t
il

iz
a

t
io

n

Number of tenants

Deadline PDG (w/o c) PDG (w/ c)

(a) In simulation

0%

20%

40%

60%

80%

100%

30 60 90 120 150 180

R
e

s
o

u
r
c
e

 u
t
il
iz

a
t
io

n

Average request rate per tenant

Deadline PDG (w/o c) PDG (w/ c)

(b) On Amazon EC2

Fig. 14: Resource utilization improvement of the deadline strict-
ness clustered algorithm.

0

200

400

600

100 200 300 400 500 600

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Number of tenants

PDG (w/o c) PDG (w/ c)

(a) In simulation

0

20

40

60

80

100

30 60 90 120 150 180

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
r
v
e

r
*

h
o

u
r
)

Average request rate per tenant

PDG (w/o c) PDG (w/ c)

(b) On Amazon EC2

Fig. 15: Extra saved energy of the deadline strictness clustered
algorithm.

0%

20%

40%

60%

80%

100%

120%

5% 10% 15% 20% 25%

Q
o

S
 o

f
S

L
A

Average arrival rate variance per partition

PDG_H PDG_NR PDG_R

(a) In simulation

0%

50%

100%

150%

5% 10% 15% 20% 25%

Q
o

S
 o

f
S

L
A

Average arrival rate variance per partition

PDG_H PDG_NR PDG_R

(b) On Amazon EC2

Fig. 16: QoS of SLA enhancement of the prioritized data
reallocation algorithm.

0

100

200

300

400

500

600

5% 10% 15% 20% 25%

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average arrival rate variance per partition

PDG_H PDG_NR PDG_R

(a) In simulation

0

20

40

60

5% 10% 15% 20% 25%

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average arrival rate variance per partition

PDG_H PDG_NR PDG_R

(b) On Amazon EC2

Fig. 17: Extra saved energy of the prioritized data reallocation
algorithm.

arrival rates in next period. The QoS of PDG NR
decreases when the variance increases. With greater
request arrival rate variance, the overloaded servers
with larger arrival rates may supply longer latency to
more requests, which leads to QoS lower than 100%.
PDG R instantly reallocates the data replicas of high
request arrival rate, which can always supply a deadline
guaranteed service with no less than 100% QoS. The
PDG H uses the past highest request arrival rate of
each data partition as the predicted value, so it supplies
a deadline guaranteed service. Figures 16(a) and 16(b)
indicate that the prioritized data reallocation algorithm
helps PDG supply a deadline guaranteed service with
varying request arrival rates.

Figure 17(a) and 17(b) show the energy saved by dif-
ferent methods versus the average arrival rate variance
per partition. It shows that the saved energy follows
PDG NR>PDG R>PDG H. Because both PDG R and
PDG NR have the same data allocation initially, and
PDG R needs to additionally execute data reallocation
algorithm for the prioritized servers experiencing severe
SLA violations, so it saves less energy than PDG NR.
Due to the same reason as Figure 16(a), PDG H produces
more active servers than other two methods. These
figures indicate that the prioritized data reallocation
algorithm saves more energy than simply using the
largest data request arrival rate in handling the request
burst, while ensuring the SLAs.

6.3.3 Performance of Adaptive Request Retransmission
In order to show the individual performance of the adap-
tive request retransmission algorithm, we measure its
performance in Amazon EC2 [16] without PDG’s other
enhancement algorithms in Section 5. In this experiment,
by default, we tested the performance of data request
from one tenant tk, and the number of tk’s data partitions
were set to 1000. The distributions of the size and the
visit rate of a data partition are the same as before. We

used two nodes in Amazon EC2 [16] to be the front-end
servers. By default, we chose r = 6 other nodes in the
same region of Amazon EC2 [16] as replica servers, each
of which stores the replicas of all data partitions.

In this experiment, we first show the effectiveness of
the sequential retransmission in meeting SLA require-
ments and saving communication overhead. We use One-
One to denote the algorithm that randomly selects one
server to request the data partition, and use One-All to
denote the algorithm that simultaneously sends requests
to all servers storing replicas of the requested data. We
use p = x% to denote the Percentile [25] algorithm with
waiting time equals the x% of the response latencies of
all requests of data partitions in the system in the last
period. We conducted the experiment for one hour to get
the CDF of the response latency of each server and then
evaluated the performance of all algorithms during the
next hour in Amazon EC2 US East and West (Oregon),
separately.

We then measured the effectiveness of our adaptive
request retransmission algorithm (denote by Adaptive) in
satisfying the SLA and reducing communication over-
head. In this experiment, after one-hour running, tenant
tk among all tenants reduced its dtk to 40ms from 50ms
and kept εtk = 95% the same as before. τtk was only
calculated once after the first hour. We compared Adap-
tive with the One-One and One-All algorithms. We also
compared it with Percentile [25], in which the front-end
server retransmits the request after 95% of the response
latencies of all responses from all servers for all requests
in the last period if there is no response. We measured
the performance of each algorithm during each hour of
consecutive 5 hours after one hour running.

Figure 18(a) shows the user satisfaction level of d-
ifferent algorithms during each hour. It shows that
the user satisfaction level follows One-All> Adap-
tive≈1>Percentile>One-One. One-All submits the requests
to all servers containing the replica of the requested

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

12

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5

S
L
A
 s
a
ti
s
fa
c
ti
o
n
 l
e
v
e
l

Hour index

One‐One One‐All Percentile Adaptive

(a) SLA satisfaction level

0
1
2
3
4
5
6

1 2 3 4 5

C
o
m
m
u
n
ic
a
ti
o
n

o
v
e
rh
e
a
d

Hour index

One‐One One‐All Percentile Adaptive

(b) Communication overhead

Fig. 18: Performance of the adaptive request retransmission
algorithm.

0
1
2
3
4
5
6

1 2 3 4 5

C
o
m
m
u
n
ic
a
ti
o
n

o
v
e
rh
e
a
d

Hours

One‐One One‐All Percentile Adaptive

(a) SLA satisfaction level

0

2

4

6

1 2 3 4 5

C
o
m
m
u
n
ic
a
ti
o
n

o
v
e
rh
e
a
d

Hour index

30ms 35ms 40ms 45ms 50ms

(b) Communication overhead

Fig. 19: Performance of the adaptive request retransmission
algorithm with different deadline requirements.

0%

20%

40%

60%

80%

100%

120%

100 200 300 400 500 600

S
L
A

 s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Number of tenants

PDG PDG_Plus

(a) In simulation

0%

20%

40%

60%

80%

100%

120%

30 60 90 120 150 180

S
L
A

 s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Average request rate per tenant

PDG PDG_Plus

(b) On Amazon EC2

Fig. 20: SLA satisfaction level of enhanced PDG.

0

20

40

60

80

100

5% 10% 15% 20% 25%

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average arrival rate variance per partition

PDG PDG_Plus

(a) In Simulation

0

200

400

600

800

5% 10% 15% 20% 25%

E
x
tr

a
 s

a
v
e

d
 e

n
e

rg
y

(s

e
rv

e
r*

h
o

u
r)

Average arrival rate variance per partition

PDG PDG_Plus

(b) On Amazon EC2

Fig. 21: Saved energy of enhanced PDG.
data partition simultaneously, which can be regarded as
Adaptive with τtk = 0. Adaptive retransmits the request
to servers one by one after adaptive waiting time τtk ,
which satisfies the SLA. Since a lower τtk leads to
a higher probability to receive a response within the
deadline, One-All generates a higher satisfaction level
than Adaptive. The 95% of the response latency used in
Percentile is much longer than τtk in Adaptive. Therefore,
it has a lower probability to receive the response by the
deadline, and cannot supply an SLA guaranteed service.
One-One does not have the retransmission, and hence
produces a lower probability to receive the response
within the deadline than Percentile. This figure indicates
that Adaptive and One-All can supply an SLA guaranteed
service. However, One-All generates much higher trans-
mission overhead, which is shown in the following.

Figure 18(b) shows the communication overhead
of different algorithms during each hour. It shows
that the communication overhead follows One-
All>Adaptive>Percentile>One-One. One-All submits
the requests to all servers containing the requested
data partition simultaneously, leading to the highest
communication overhead. Other algorithms send
requests to servers one by one after a certain waiting
time, during which a response may be received. Thus,
they generate lower communication overhead than
One-All. Adaptive adaptively sets the waiting time τtk
to guarantee the SLA while minimizing the number of
retransmission messages. The waiting period used in
Percentile is much longer than the adaptive waiting time
τtk . Thus, it saves more retransmission messages than
Adaptive. One-One selects only one server to request
the data partition without retransmission, resulting
in the lowest communication overhead. Figures 18(b)
indicates that Adaptive generates lower transmission
overhead than One-All, though both of them can supply
deadline guaranteed service. Although Percentile and
One-One generate lower communication overhead than
Adaptive, they cannot provide SLA guaranteed service.
Figures 18(a) and 18(b) together indicate that Adaptive

can supply an SLA guaranteed service while maximally
saving communication overhead.

We then measured the Adaptive’s performance under
different SLA requirement changes. We tested the per-
formance of the data requests of 5 tenants, each having
1000 data partitions. After one-hour running, each tenant
reduces the deadline from 50m to a lower value (indicat-
ed in the figure). Figure 19(a) shows the (100%−ε) (95%)
of response latency of the data requests of each of the 5
tenants in Adaptive after each of total 5 hours. From the
figure, we can observe that the 95% of response latencies
are all below the required deadline, which means that
Adaptive can receive at least (100%−ε) of requests within
each different dtk . Adaptive changes the adaptive waiting
time τtk according to Equation (16) under different SLA
requirements. The figure indicates that Adaptive can al-
ways supply an SLA guaranteed service even when a
tenant has shorter deadline requirement.

Figure 19(b) shows the communication overhead of
the data requests of each of the 5 tenants in Adaptive
after each of total 5 hours. It shows that a lower deadline
requirement leads to a larger communication overhead.
This is because a lower deadline requirement leads to
a shorter adaptive waiting time τtk according to Equa-
tion (16). The experimental results indicate that Adaptive
can save communication overhead by adaptively adjust-
ing the adaptive waiting time τtk when the deadline
is decreased and supply an SLA guaranteed service as
shown in Figure 19(a).

6.3.4 Performance of Enhanced PDG
We then measure the performance of PDG with all the

three enhancement algorithms (denoted by PDG Plus)
including the deadline strictness clustered data allo-
cation, the regular prioritized data reallocation with
Tr = 0 and the adaptive request retransmission. We
measured the SLA satisfaction performance and energy
saving since they are the most important metrics. In
this experiment, tenants add data replicas to servers in
turn and each tenant adds one data replica to a server

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

13

at each time. Also, each data partition’s request arrival
rate varies once at a randomly selected time during the
experiment time.

Figures 20(a) and 20(b) show the median, 5th and 95th
percentiles of all tenants’ SLA satisfaction level in sim-
ulation and on testbed, respectively. In this experiment,
PDG cannot supply a deadline guaranteed service while
PDG Plus can, which show the combined effectiveness
of the three enhancement algorithms in improving the
SLA satisfaction performance. Figure 21(b) and 21(b)
show the extra saved energy versus the average arrival
rate variance per partition. They show that the extra
saved energy follows PDG Plus>PDG. The results also
confirm the combined effectiveness of the three enhance-
ment algorithms in reducing the energy consumption.
For the details of the reasons, please refer to the previous
sections in Section 6.3. The results suggest that 1) group-
ing tenants with similar deadline strictness can lead to
higher resource utilization; 2) when the request arrival
rates vary greatly, distributed load balancing method can
offload the excess load from overloaded servers more
quickly; and 3) the assigned servers for a data request
can be adaptively determined in order to improve the
SLA satisfaction performance.

7 RELATED WORK

Recently, several works [10, 12–15] have been proposed
on deadline-aware network communications in datacen-
ters. Since bandwidth fair sharing among network flows
in the current datacenter environment can degrade appli-
cation deadline awareness performance, Wilson et al. [10]
proposed D3 explicit rate control to apportion band-
width according to flow deadlines instead of fairness.
Hong et al. [12] proposed a distributed flow scheduling
protocol. A flow prioritization method is adopted by all
intermediate switches based on a range of scheduling
principles, such as EDF (Earliest Deadline First) and so
on. Earliest Deadline First (EDF) [13] is one of the earliest
packet scheduling algorithms. It assigns a dynamic pri-
ority to each packet to achieve high resource utilization
and satisfy the deadline. Vamanan et al. [14] proposed a
deadline-aware datacenter TCP protocol, which handles
bursts of traffic by prioritizing near deadline flows over
far deadline flows in bandwidth allocation to avoid con-
gestion. In [15], a new cross-layer network stack was pro-
posed to reduce the long tail of flow completion times.
Our work shares a similar goal of deadline guarantee
as the above works. However, they focus on scheduling
work flows for deadline-aware network communications
rather than cloud storage systems. Spillane et al. [35]
used advanced caching algorithms, data structures and
Bloom filters to reduce the data Read/Write latencies in
a cloud storage system. However, it cannot quantify the
probability of guaranteed latency performance without
considering request rates of stored data partitions in a
server.

To reduce the service latency of tenants, Pisces [33]
assigns the resources according to tenant loads and
allocates the partitions of tenants using a greedy strategy
that aims not to exceed storage capacity and service
capacity of servers. In [36], the authors improve Best-Fit
scheduling algorithm to achieve throughput-optimal.

Wei et al. [37] proposed a cost-effective dynamic replica-
tion management scheme to ensure the data availability.
It jointly considers the average latency and failure
rate of each server to decide optimal replica allocation.
Wang et al. [26] proposed a scalable block storage system
using pipelined commit and replication techniques to
improve the data access efficiency and data availability.
In [38–40], the data availability is improved by selecting
data servers inside a datacenter to allocate replicas in
order to reduce data loss due to simultaneous server
failures. Ford et al. [41] proposed a replication method
over multiple geo-distributed file system instances to
improve data availability by avoiding concurrent node
failures. However, these methods cannot guarantee SLAs
of tenants without considering the request rates of stored
data in a server and its service rate. There are related
works in datacenter focusing on topology improve-
ment/management to improve the bisection bandwidth
usage of the network to increase the throughput, such
as FatTrees [24], VL2 [42], BCube [43], and DCell [43],
which finally reduce the average latency. However, none
of them can guarantee the deadlines of data requests.

8 CONCLUSION

In this paper, we propose the parallel deadline guar-
anteed scheme (PDG) for cloud storage systems, which
dynamically moves data request load from overloaded
servers to underloaded servers to ensure the SLAs for
tenants. PDG incorporates different methods to achieve
SLA guarantee with multi-objectives including low traf-
fic load, high resource utilization and fast scheme execu-
tion. Our mathematical model calculates the extra load
that each overloaded server needs to release to meet the
SLAs. The load balancer builds a virtual tree structure
to reflect the real server topology, which helps schedule
load movement between close servers in a bottom-up
parallel manner, thus reducing traffic load and expe-
dite scheme execution. The scheduling considers data
partition size and request rate to more quickly resolve
the overloaded servers. A server deactivation method
also helps minimize the number of active servers while
guaranteeing the SLAs. PDG is further enhanced by the
deadline strictness clustered data allocation algorithm
to increase resource utilization, a prioritized data real-
location algorithm and an adaptive request retransmis-
sion algorithm to dynamically strengthen SLA guarantee
under the variances of request arrival rates and SLA
requirements, respectively. Our trace-drive experiments
on both a simulator and Amazon EC2 [16] show that
PDG outperforms other methods in guaranteeing SLA
and the multi-objectives. In our future work, we will
implement our scheme in a cloud storage system to
examine its real-world performance.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, and Microsoft
Research Faculty Fellowship 8300751. An early version
of this work is presented in the Proc. of P2P’15 [44].

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2015.2513054, IEEE
Transactions on Parallel and Distributed Systems

14

REFERENCES

[1] Amazon DynnamoDB. http://aws.amazon.com/dynamodb/,
[Accessed in Nov. 2015].

[2] Amazon S3. http://aws.amazon.com/s3/, [Accessed in Nov.
2015].

[3] Gigaspaces. http://www.gigaspaces.com/, [Accessed in Nov.
2015].

[4] H. Stevens and C. Pettey. Gartner Says Cloud Computing Will
be as Influential as E-Business. Gartner Newsroom, Online Ed.,
2008.

[5] S. L. Garfinkel. An Evaluation of Amazons Grid Computing
Services: EC2, S3 and SQS. Technical Report TR-08-07, 2007.

[6] N. Yigitbasi A. Iosup and D. Epema. On the Performance
Variability of Production Cloud Services. In Proc. of CCGrid, 2011.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environ-
ments. In Proc. of OSDI, 2008.

[8] R. Kohavl and R. Longbotham. Online
Experiments: Lessons Learned. http://exp-
platform.com/Documents/IEEEComputer2007OnlineExperiments.pdf.,
2007.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannona, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. In Proc. of VLDB,
2008.

[10] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better
Never than Late: Meeting Deadlines in Datacenter Networks. In
Proc. of SIGCOMM, 2011.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, P. Patel J. Padhye,
B. Patel, S. Sengupta, and M. Sridharan. Data Center TCP
(DCTCP). In Proc. of SIGCOMM, 2010.

[12] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In Proc. of SIGCOMM, 2012.

[13] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. Journal of the ACM,
1973.

[14] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware
Datacenter TCP (D2TCP). In Proc. of SIGCOMM, 2012.

[15] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks.
In Proc. of SIGCOMM, 2012.

[16] Amazon EC2. http://aws.amazon.com/ec2/, [Accessed in Nov.
2015].

[17] D. Wu, Y. Liu, and K. W. Ross. Modeling and Analysis of
Multichannel P2P Live Video Systems. TON, 2010.

[18] A. Beloglazov and R. Buyya. Optimal Online Deterministic
Algorithms and Adaptive Heuristics for Energy and Performance
Efficient dDnamic Consolidation of Virtual Machines in Cloud
Data Centers. CCPE, 2011.

[19] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual Machine
Image Distribution Network for Cloud Data Centers. In Proc. of
INFOCOM, 2012.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[21] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975.
[22] N. Bobroff, A. Kochut, and K. Beaty. Dynamic Placement of

Virtual Machines for Managing SLA Violations. In Proc. of IM,
2007.

[23] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton Univer-
sity Press, 2009.

[24] M. AI-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In Proc. of SIGCOMM, 2008.

[25] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 2013.

[26] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin. Robustness in the Salus scalable block
store. In Proc. of NSDI, 2013.

[27] Apache Hadoop FileSystem and its Usage in Facebook.
http://cloud.berkeley.edu/data/hdfs.pdf.

[28] Palmetto Cluster. http://http://citi.clemson.edu/palmetto/, [Ac-
cessed in Nov. 2015].

[29] N. B. Shah, K. Lee, and K. Ramchandran. The MDS Queue:
Analysing Latency Performance of Codes and Redundant Re-
quests. arXiv:1211.5405, 2013.

[30] CTH Trace. http://www.cs.sandia.gov/Scalable IO/SNL
Trace Data/, [Accessed in Nov. 2015], 2009.

[31] H. Medhioub, B. Msekni, and D. Zeghlache. Ocni-open cloud
networking interface. In Proc. of ICCCN, 2013.

[32] R. Stanojevic, N. Laoutaris, and P. Rodriguez. On Economic
Heavy Hitters: Shapley Value Analysis of 95th-Percentile Pricing.
In Proc. of IMC, 2010.

[33] D. Shue and M. J. Freedman. Performance Isolation and Fairness
for Multi-Tenant Cloud Storage. In Proc. of OSDI, 2012.

[34] S. Seny, J. R. Lorch, R. Hughes, C. G. J. Suarez, B. Zill,
W. Cordeiroz, and J. Padhye. Don’t Lose Sleep Over Availability:
The GreenUp DecentralizedWakeup Service. In Proc. of NSDI,
2012.

[35] R. P. Spillane, P. Shetty, E. Zadok, S. Dixit, and S. Archak. An
Efficient Multi-Tier Tablet Server Storage Architecture. In Proc. of
SoCC, 2011.

[36] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic Models of Load
Balancing and Scheduling in Cloud Computing Clusters. In Proc.
of INFOCOM, 2012.

[37] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng. CDRM:
A Cost-Effective Dynamic Replication Management Scheme for
Cloud Storage Cluster. In Proc. of Cluser, 2010.

[38] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and
M. Rosenblum. Copysets: Reducing the Frequency of Data Loss
in Cloud Storage. In Proc. of USENIX ATC, 2013.

[39] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: Practical
Power-Proportionality for Data Center Storage. In Proc. of Eurosys,
2011.

[40] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash,
R. Schmidt, and A. Aiyer. Apache Hadoop Goes Realtime at
Facebook. In Proc. of SIGMOD, 2011.

[41] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of OSDI, 2010.

[42] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A Scalable
and Flexible Data Center Network. In Proc. of SIGCOMM, 2009.

[43] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. Bcube: A High Performance, Server-Centric Network
Architecture for Modular Data Centers. In Proc. of SIGCOMM,
2009.

[44] G. Liu and H. Shen. Deadline Guaranteed Service for Multi-
Tenant Cloud Storage. In Proc. of P2P, 2015.

Guoxin Liu received the BS degree in BeiHang
University 2006, and the MS degree in Insti-
tute of Software, Chinese Academy of Sciences
2009. He is currently a Ph.D. student in the De-
partment of Electrical and Computer Engineer-
ing of Clemson University. His research interests
include distributed networks, with an emphasis
on Peer-to-Peer, datacenter and online social
networks.

Haiying Shen received the BS degree in Com-
puter Science and Engineering from Tongji Uni-
versity, China in 2000, and the MS and Ph.D.
degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively.
She is currently an Associate Professor in the
ECE Department at Clemson University. Her
research interests include distributed computer
systems and computer networks with an empha-
sis on P2P and content delivery networks, mo-
bile computing, wireless sensor networks, and

grid and cloud computing. She was the Program Co-Chair for a number
of international conferences and member of the Program Committees of
many leading conferences. She is a senior member of the IEEE and a
member of the ACM.

Haoyu Wang received the BS degree in Uni-
versity of Science & Technology of China, and
the MS degree in Columbia University in the
city of New York. He is currently a Ph.D student
in the Department of Electrical and Computer
Engineering of Clemson University. His research
interests include datacenter, cloud and distribut-
ed networks.

